Some Connections Between Primitive Roots and Quadratic Non-Residues Modulo a Prime
نویسنده
چکیده
In this paper we present some interesting connections between primitive roots and quadratic non-residues modulo a prime. Using these correlations, we propose some polynomial deterministic algorithms for generating primitive roots for primes with special forms (for example, for safe primes).
منابع مشابه
Distribution of Quadratic Non-residues Which Are Not Primitive Roots
In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo p or 2p for an odd prime p and h > 1 an integer. MSC 2000 : 11N69
متن کاملA Novel Method of Searching Primitive Roots Modulo Fermat Prime Numbers
Primitive root is a fundamental concept in modern cryptography as well as in modern number theory. Fermat prime numbers have practical uses in several branches of number theory. As of today, there is no simple general way to compute the primitive roots of a given prime, though there exists methods to find a primitive root that are faster than simply trying every possible number. We prove the eq...
متن کاملA Necessary and Sufficient Condition for the Primality of Fermat Numbers
We examine primitive roots modulo the Fermat number Fm = 22 m + 1. We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.
متن کاملAn Analogue of Artin’s Primitive Root Conjecture
Let S = {a1, a2, . . . , an} be a set of nonzero integers such that for any nonempty subset T of S, the product of all the elements in T is not a perfect square. Then the density of the set of primes p for which the ai’s are quadratic non-residues modulo p, but not primitive roots modulo p, is at least 1 2n(q 1)qm , where m is a non-negative integer with m n and q is the least odd prime which...
متن کاملComments on Search Procedures for Primitive Roots 1721
Let p be an odd prime. Assuming the Extended Riemann Hypothesis , we show how to construct O((log p) 4 (loglogp) ?3) residues modulo p, one of which must be a primitive root, in deterministic polynomial time. Granting some well-known character sum bounds, the proof is elementary, leading to an explicit algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012